COVID-19 PANDEMIC AS A TRIGGER OF HEALTH CARE DIGITALIZATION

© 2021Tatyana Vladimirovna Root

2021 – № 2 (22)


DOI: https://doi.org/10.33876/2224-9680/2021-2-22/04

Citation link:

Root T. V. (2021). Pandemija COVID-19 – trigger cifrovizacii zdravoohranenija [COVID-19 Pandemic as a Trigger of Health Care Digitalization].  Medicinskaja antropologija i biojetika [Medical Anthropology and Bioethics], 2 (22).


Author info:

Tatyana Vladimirovna Root is a post-graduate student and teacher at the Yuri Educational Center (Russian State University for the Humanities, Moscow).


Keywords: big data, artificial intelligence, machine learning, health care, biomedicine, COVID-19 pandemic

Abstract. COVID-19 pandemic started a period full of contradictory feelings. A digital state and digital health care are gradually becoming reality, but the mechanisms of these systems are not well-understood yet. The article attempts to describe the specificity of big data in health care: what are its constituent parts, how are they structured, in what branches of biomedicine can big data analytics be applied? The author questions the possibility of further development of these new trends for the benefit of doctors and patients, pointing out that big data analytics, like all innovations, has a downside. The article touches upon particular problems of the introduction of digital technologies into health care and ways to solve them. The digital reform of health care has started only recently, and now is the moment when medical anthropologists’ expertise can help to maximize benefits and avoid harm from the seemingly inevitable changes.


References

Attin, M., Feld, G., Lemus, H. et al. (2015). Electrocardiogram characteristics prior to in-hospital cardiac arrest. Journal of Clinical Monitoring and Computing, Vol. 29, No. 3, p. 385–392. DOI: 10.1007/s10877-014-9616-0.

Belle, A., Thiagarajan, R., Soroushmehr, S.M.R., Navidi, F, Beard, D.A., Najarian, K. (2015) Big Data Analytics. Healthcare BioMed Research International Journal. Article ID 370194. DOI: https://doi.org/10.1155/2015/370194.

Borges de Nascimento, I.J., Marcolino, M.S., Abdulazeem, H.M., Weerasekara, I., Azzopardi-Muscat, N., Gonçalves, M.A., Novillo-Ortiz, D. (2021) Impact of Big Data Analytics on People’s Health: Overview of Systematic Reviews and Recommendations for Future Studies. J Med Internet Res., No 23 (4): e27275. DOI: 10.2196 / 27275PMID: 33847586PMCID: 8080139.

Bressan, N., James, A., McGregor, C. (2012) Trends and opportunities for integrated real-time neonatal clinical decision support. Proceedings of the IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI ’12), p. 687–690 (https://ieeexplore.ieee.org/document/6211676) (15.11.2021).

Chen, R., Mias, G. I., Li-Pook-Than, J. et al. (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell, Vol. 148, No. 6, p. 1293–1307. DOI: https://doi.org/10.1016/j.cell.2012.02.009.

Hemphill, J.C., Andrews, P., de Georgia, M. (2011) Multimodal monitoring and neurocritical care bioinformatics. Nature Reviews Neurology, Vol. 7, No. 8, p. 451–460. DOI: https://doi.org/10.1038/nrneurol.2011.101.

Hood, L., Price, N.D. (2014) Demystifying disease, democratizing health care. Science Translational Medicine, Vol. 6, No. 225, Article ID 225ed5. DOI: https://www.science.org/doi/10.1126/scitranslmed.3008665.

Oyelade, J., Soyemi, J., Isewon, I., Obembe ,O. (2015) Bioinformatics, healthcare informatics and analytics: a imperative for improved healthcare system. International Journal of Applied Information Systems, Vol. 8, No. 5, p. 1–6. DOI: https://doi.org/10.5120/ijais15-451318.

Paltzev, M.A., Belushkina, N.N., Chaban, E.A. (2015) 4P – meditzina kak novaya model’ zdravookhraneniya [P4 medicine as a new healthcare model]. Bulletin of the Higher School of Health Care Organization and Management health care management [Bulletin of the Higher School of Health Care Organization and Management health care management], No 2 (https://www.vshouz.ru/journal/2015/4p-meditsina-kak-novaya-model-zdravookhraneniya/) (15.11.2021).

Rebrova, O.Yu. (2020) Zhiznenniy tzikl system poddrzhki prinyatiya vrachebnykh resheniy kak meditzinskikh tekhnologiy [Life cycle of decision support systems as medical technologies]. Vrach i informacionnye tehnologii [Physician and Information Technology], No 1, p.  27–37. DOI: 10.37690/1811-0193-2020-1-27-37.

Shakhabov, I.V., Melnikov, Y.Y., Smyshlyayev, A.V. (2020) Osobennosti razvitiya tzifrovykh tekhnologiy v zdravookhranenii v uslobiyakh COVID-19 [Features of the development of digital technologies in healthcare in the context of COVID-19]. Nauchnoye obozreniye. Meditzinskiye nauki[Scientific review. Medical sciences], No 6, p. 66–71 (https://science-medicine.ru/ru/article/view?id=1157) (15.11.2021).

Stolyar, V.L., Amcheslavskaya, M. A, Fedorov, V.F. et al. (2018) Telemeditzina: napravleniya, organizatziya, tekhnologii, osnatcheniye [Telemedicine: directions, organization, technology, equipment]. Textbook, Moscow: RUDN University.

Turkina, N.V. (2017) Robot-assisrirovanniye operatzii [Robot-assisted surgery]. Meditzinskaya sestra[Nurse], No 6, p. 11–14.

Vorobiev A.P., Vorobiev P.A., Mukanin D.A., Krasnova L.S. (2020) Effektivnost’ sistemy iskusstvennogo intellect MeDiCase pri diagnostike infektzii COVID-19 v ambulatornykh usloviyakh [The efficiency of the artificial intelligence system MeDiCase in the diagnosis of COVID-19 infection on the outpatient clinics]. Problemy standartizatzii v zdravookhrznenii [Problems of standardization in healthcare], No 11–12 (https://ps.newdiamed.ru/issue/id207499/id207524) (15.11.2021).

Zanatta, P., Messerotti Benvenuti, S., Bosco, E., Baldanzi, F., Palomba, D., Valfré, C. (2011) Multimodal Brain Monitoring Reduces Major Neurologic Complications in Cardiac Surgery. J Cardiothorac Vasc Anesth., No 25(6), p. 1076-1085. DOI: 10.1053/j.jvca.2011.05.015.